ON THE STEADY REGIME OF AN HEREDITARILY
ELASTIC OSCILLATOR

S. I. Meshkov

The weakly singular functions which are used as kernels of the Boltzmann— Volterra integral
equations in the solution of statistical problems of the hereditary elasticity theory [1] have been widely
used in the solution of dynamic problems as well [2]. An entire series of studies [3-5] has been made of
the behavior of the one-dimensional oscillator alone. In the present paper we study the previously unknown
characteristics of the steady-state regime of a one-dimensional oscillator whose hereditary characteristics
are described by functions having an integrable singularity of the Abel type.

1. By virtue of the known connection between the relaxation R(t) and aftereffect kernels K({t) the
equation of motion of the hereditarily elastic oscillator can be written in the equivalent forms
00
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Here x is the coordinate, the overdot denotes derivative with respect to time, p is the per-unit-mass
amplitude of the external moncharmonic force acting with the frequency w, and the relaxed E; and un—
relaxed Ew values of the elastic modulus define the corresponding elastic oscillation eigenfrequencies
wp and we.

For the stationary solution
z= X sin (@t — @) (1.3)
equations (1.1) and (1.2) are written in the form of the elastic-viscous analogy
@A — 0z +odo Bz = psin o, (©,%— 02C)z +oDz"= Psin (@t — @) (L.4)

P=p(C*+DY", tgg,=DC™ (1.5)

The amplitude X and the phase ¢4 are defined by the expressions

a=Xpl=[0#4 — 0 + 0B = Pp i, — 0P + oD (1.6)
tg =B 4 — (@ /ey t= D [C — (Po [ po )] W
Here
x> % o .
Asi—l-vc(i—g R (t)cos cotdt), stcg R (t)sin otdt , CE1+VGS K (t) cos wtdz, DEch K (t)sin otdt (1.8)
e : ) 0

It is also not difficult to find the inverse Q! of the system quality, which is taken as the measure of
the internal friction

=S W (1.9)
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Here AW ig the energy dissipated in the course of one cycle, and W is the maximal value of the
energy in a given cycle.

In accordance with (1,4) AW is calculated from the formula

AW =p z' sin otdi = npX sin ¢, (1.10)

18]
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or is found as the area of the hysteresis loop
AW = nX?w@B = nX2o 2D (C? 1+ D)1 (1.11)
It is easy to see the equivalence of (1,10) and (1.11) after substituting therein the values of X and ¢,
from (1.6) and (1.7). The maximal value of the energy is defined by the expression
W= hX204 = Y2X?0 2C (C* 4 D?)7? (1.12)
As a result we obtain the formula for the internal friction
Ql= BAl=DC'= g ¢, (1.13)

We note that in the quasistatic case, i.e., when the inertial properties of the system can be neglected,
the tangent of the phase shift angle (1.7) becomes the tangent of the mechanical loss angle, which coincides
identically with Q~1(1.13).

More detailed information on the calculation of the oscillations of elastically hereditary systems is
given in [6].

2, As the first example we shall examine the very simple weakly singular Abel kernel, which we
take as the aftereffect kernel

K (ty =21 T (1) o<T<<Y 2.1)

Here T4 is the retardation time, A similar kernel, only without the gamma function I'(y), was used
by Duffing [7] for analysis of the static creep curves of belts and other materials, The direct solution of
the dynamic problem with the Duffing kernel leads only to the appearance of the gamma function in the
final formulas, while the dependence on the frequency w and the retardation time 7 o (relaxation time Te)
remains the same,

The resolvent of the kernel (2,1) — the relaxation kernel — is defined by the Rabotnov fractional-
exponential function [8]

fse)
RN =179, (—v,1,0), 9 = 2“ (_,_V_>" £ (i) 1 Eo (Te >Y
a=p \

) Thre+17" B T \7) (2.2)
It is not difficult to calculate the sine and cosine of the Fourier transformant functions (2,1) and
(2.2) and then the quantities
(14 vg) (vl - cos ) B (1 4 v5)sin
T vt 4w Yy 4 2cos Y ' w4 x Ty - 2cos ) (2.3)
C=1-+v«""cosP, D=wu""siny, xn=or, Y=Yy (2.4)

Substituting these values into (1.6) and (1.7), we find respectively the amplitude, tangent of the phase
shift angle, and internal friction

. WV v - 2c0sp o, .
= Q 2l f ot —202Q ) ' G0t —0 (2.5)
tg 1= [Q, (08 P+ %"V 1) — 0F (cos P + % 9)] L ©_ 2 sin P (2.6)
Q1=1tg @z ==(cos P+ x"v 1) Tginy .7

In (2,2)-(2,7) and hereafter, where the quantities 7 and v appear without indices it is assumed that
T=15 forv =vg andT = 7¢ forv = vg = AE/E,.
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For v= 1 use of the kernels (2.1) and (2.2) in the Boltzmann—Volterra

g 7 A\ integral relations leads to the Maxwell rheological model to within the
1 / \}"”-3 constant vg (ve= 1if Egj = 0). In this case the dynamic formulas (2,5)-(2.7)
3 correspond to the Maxwell model, for which at the frequency w = ws = we/V2
/ \ all the resonant amplitudes intersect at a single point, regardless of 7,
P Y /N5 g reaching at this point the values a5 = 24,7 [9]. For the kernels (2.1) and
/ %&\ (2.2) at the frequency w = wx only the resonant amplitudes corresponding to
i == i T =0 and T = = intersect and have the values 2w» °, For arbitrary T at the
w0 g point w = w, (2.5), (2.6) have the form
Fig. 1 oy [V Y - 2cos P\
= ( s VT TTv —2cos P ) (2.8)
t =2 (ot WL — 3, W) i
; - ' g Py (%5 7w %y v)sind (2.9)
y \ We shall study the behavior of the amplitude a, ,since (2.8) can be
73 used to find the relaxational characteristics from experimental data. For
\ fixed values of v and £ = E;/E, the dependence of a, on the relaxation time
I \ Tg is a symmetric peak, which under the condition %% = v reaches the
— 4 \ maximum
Z a7 \\ a*m=¢*(0) ctg o P (2.10)
T
/ / \&J For large and small values of T the behavior of the amplitude ax is
4 Ck / defined respectively by the asymptotic formulas
Fig, 2 >1, a5 = 0,0 (1 4 29,7 cos ) 2.11)
€1, a*z=a, 014 2v e, cosP) (2.12)

Figure 1 shows the dependence of the quantity b = ax — a*(o)on In Te for veg =1, (£ =0) Weo= 2,
The numerals on the curves denote the values of the parameter 7.

We first investigate the dependence of the amplitude ax on the divisibility parameter ¥ for fixed
values of 7 and £ using (2.10) for the maximal value of ay ,,,. Then it is not difficult to see thata, , in-
creases monotonically from the value ax ©) for ¥ =1 to infinity as v — 0. The following asymptotic
estimates hold

-1, e m = 2, 1+ Yo (1 —m)], T -0, a,, =8 (o 2y)t ©2.13)

I wx! v, the behavior of ax as v — 1 and v — 0 is defined by the expressions, respectively,
Y=, e a1 w1l — 1) v, (v ) 2.14)

t =0,  apma, P14V —v) 2[4+ 27 (v—v) ] (2.15)

The amplitude ax as a function of the degree of relaxation £ when 7 and v play the role of parameters,
is defined in the region £ ¢ [0, 1] and for the same condition wx! = v (or in the variables Te, & this is
equivalent to £=1— wkg'y) reaches the maximal value defined by (2,10). Hence we see that with variation
of & the position of the peak on the In Tg axis changes and appears only for those values of the parameters
Te and ¥ which satisfy the condition wxe ) < 1, rather than for any values of these parameters. The
asymptotic behavior of the amplitude ax as £ — 0 and £ — 1 is defined by the expressions, respectively,

E—~0, ap=h[1-+2E(x 2v+ %,¢~2 — 208 24) 7 (30,7 - % . ¥) 0 Y] @.16)
h=a,® (n Y 4w 7 4 2c0s gy n Y+ %, —2cos )k
E—-1, ay=a 1+ v(1—E)cosyP] (2.17)

Figure 2 shows the dependence of the quantity b on £ for Tg = 1, ww = V2 for different v, whose values
are indicated by the numerals on the curves. We note that for £ = 1 all the curves for ax converge to the
single point ax = ax 0 by virtue of the specific nature of the kernel (2.1) which describes the infinite creep
process,

3. As the second example we consider the special case of the Rabotnov 3,qunction for v= 1. Then
the relaxation and aftereffect kernels are written in the symmetric form

RO)= 1,15, (1,71, K (=159, (—1, T, 1) (3.1)
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In this case

0 R o .
g u, T (L ET sy _ Vg Sin g
* ai/ / / A= HY - n Y 2008 ’ B= %Y %Y - 2008 (3.2)
g E T L (L E Y cos ) _ Ve sin®
/ 7 / O= %g¥ F %y~ 2 cos P ’ D= AT %Y+ 2c08 Y (3.3)
5 e
/ /W In accordance with (1.6), (1.7), (1.16) we obtain for the amplitude,
13
/,’/ phase shift, and internal friction
/
.__// _ %Y + %, +2cos e O = i — b
) £ - Sl Emy o o, Reesp) T 0 0 (3.9)
Fig. 3 bg Q1 = [Qu Y + Qo —r -+ (R0 + Q. ) €05 P17 (R, — Q)'sin P (3.5)
Qi=tg Qs = [x,Y +Ex, Y + (14 E) cos Y[ v, sin ¢ (3.6)

For v= 1 all the relations (3.1)— (3.6) correspond to the standard linear body model, for which at
the frequency
0% =1 (0 + mo?) (3.7)

the resonant amplitude a, does not depend on the relaxation time 7¢, i.e., all the amplitudes inersect at
a single point, regardiess of T¢ [10]. For v # 1 only the two resonant amplitudes corresponding to Tg = 0
and Tg = © intersect at this point w = w* . For arbitrary T, at w = wy, the amplitude a, and the phase @«
are defined by the formulas
- 02
ty = 2, ( %, g, Y 4 2 cos 1|)> , 4, = - 2 (3.8)

% YR, 2008 oo? — O

tg Q1 =2 (’K*EY — %*E-Y) sin (3.9)
We note that (3.9) is valid only when we # wy. FOT we = wy, i.€., in the absence of a modulus defect,
it follows immediately from (3.5) that @4 = 0, which corresponds to the elastic solution.
Studies analogous to that of the Abel—Duffing kernel lead to the following results.

The function ay = f(7g) (v and £ are the parameters) forms a symmetric peak, which for the condition
wxg = 1 reaches a maximal value

aum = a, ctg¥uyp (3.10)

For large and small values of T the amplitude ax approaches the value a*(o), which is clearly seen
from the following asymptotic estimates

TS, a5 8,0 (1 4 2%,~Y cos Py (3.11)
T, <1, .= a0 (14 2% Ycos ) (3.12)
For the corresponding value of v the curve of the function ax =f(In 7y) is analogous to that shown in

Fig. 1, and for £ = 0 they coincide exactly.

For fixed values of Te and £ the amplitude a4 increases montonically with reduction of v from the
value a *(0) for v =1 to infinity as v — 0. For example, for the condition g = 1, this is easily seen from
(3.10) and for other values of wye the asymptotic behavior of a, is defined by the formulas

11, e[+ n(—71) 0t % Y7 (3.13)
70,  ay 7 2007 [Yar® 4 (In )2 (3.14)

Finally, with change of the degree of relaxation § the amplitude ax changes, increasing monotonically
from the constant value for £ = 0 to infinity as £ — 1,

This is not difficult to understand, since for we’ = woz the elastic solution is obtained and the amplitude
at resonance will naturally be infinite. As £ — 0 the asymptotic formula holds
ay == ag {14 TE 4 4 (% 2y + 3,-2Y — 2 005 24p) 72 (3¢~ — . ¥) cos Y]}

. 3.15
B = (KoY %Y + 2 cos ‘P)V’ (oY + % —Y — 2 cos w)‘l/”, Koo = O Ty [ V§ ( )
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Figure 3 shows a xas a function of the relaxation ratio £ for various v, whose values are noted on
the curves (Tg = 1, we = V2). The basic difference from the curves shown in Fig. 2 is that all the amplitudes
ax approach infinity as £ — 1, since they correspond to elastic resonance.

4, These results admit the possibility of their use for experimental applications. First, we note
that the relaxation and aftereffect kernels discussed above are equivalent to quite definite relaxation
(retardation) time distribution functions. For example, for the Abel—Duffing aftereffect kernel the corres—
ponding distribution function is obtained most easily if we use the definition of the gamma function in
terms of the Euler integral and make a change of the variables therein., As a result we can write the
relation

AP —p) =\ T 2t/ gy (4.1)

Q8

from which it follows that the retardation time distribution functions, equivalent to the Abel and Duffing
kernels, have the forms respectively

fa@= (e y ¥ sinny |, T (v) = 7,70 (1 — gL ert (4.2)

The relaxation time distribution function for the Rabotnov kernel (2.2) can be obtained if we use the
integral representation of the s . function by the Mellin formula
c+ico

— .
Te 9y (=%, T, 8) = v, S
e—ix

exp (pt) dp
14wt (pr )Y

(4.3)

Then, calculating the contour integral (4.3) by the methods of complex variable function theory, we
obtain the relation

sin sy ogo T rexp(—1t/T)dT
We v (v/7 ) Fv (e 2008 my (4.4)

T;YQY (_' Ver Tes 1=

from which we see that the relaxation time distribution function is defined by the expression
sin wy T \Y T\ -1
=55 [ (3] o () 2] ®.5)

For vg = 1 we obtain the distribution function corresponding to the kernel (3.1).

It follows from (4.2) and (4.5) that the parameter v, defining the weak singularity of the hereditary
functions, characterizes the "smearing" of the relaxation-retardation spectra. Therefore the experimental
determination of v is of definite interest. This is most easily done for the oscillator example if we study
the temperature dependence of the amplitude a4 at the frequency w = wx*, assuming that the relaxation time
T depends on the temperature T following the Arrhenius law

Te =T,y exp (— H [ kT) (4.6)

Here H is the activation energy of the relaxational process, kis the Boltzmann constant, and Tg is
the frequency factor.

Then, knowing the maximal value of the amplitude ax,, and a*(o) , according to (2,10) and (3.10) we
obtain
ay= 4 arc tg (2,0 / aym) @.7)

We note that the parameter v determined in this way for the kernels (2.2) and (3.1) has different
values, since in the first case ¥ corresponds to the background, while in the second case it corresponds
to the relaxational peak of the internal friction Q ! and the processes controlling these phenomena have a
different nature. The values of ¥ obtained from the temperature dpendence of Q! for the background of
certain pure metals (Cu, Al, Fe, Mo, W and others) lie in the range 0.2-0.3 [11]. The values of v for the
relaxational peaks are considerably higher for example for the grain boundary peak in polycrystalline
aluminum = 0,7 [12],

Thus, study of the temperature dependence of the oscillator amplitude a. in the steady-state regime
makes it possible to determine the parameter ¥ by the same method for fundamentally different phenomena,

Another important characteristic of the relaxational process is the activation energy H, which in the
present method, regardiess of whether it is related with the peak or the background, is defined by the same
formula:
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H= k1T (Ty — T ln (0,0 0,079 (4.8)

For an unchanged relaxation ratio the variation of the frequency wx« is achieved by varying the mass.

The frequency factor for the background is found from the formula

Inv,,=In¥ —¥[In(o, 0.,) + Hk (T 4 To1)] (4.9)

and for the peak we must set v = 1in (4.9).

Thus, study of the resonant amplitude of the hereditarily elastic oscillator at the frequency w = w,

makes it possible to find all the parameters of the relaxational spectrum.

10,

11,

12,

In conclusion the author wishes to thank Yu, N, Rabotov for disccusions of the results.
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